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Abstract-An expression for the high frequency asymptotics of the acoustic noise spectrum in nucleate 
pool boiling is derived taking into account the compressibility and viscosity effects. The expression is 
obtained in quasi-acoustical approximation. The theoretical results qualitatively agree with previous 

measurements of boiling noise. 

INTRODUCTION 

THE ACOUSTICAL emission from boiling bubbles has 
been studied experimentally and theoretically. These 
studies investigated the nucleate pool boiling which 
occurs when a heater is submerged in a tank of initially 
stagnant liquid. The spectra of acoustical noise in pool 
boiling were obtained [l-3], and it was established 
that the spectral density of boiling noise spectra varies 
as S -f 4 for low frequencies and S -f -2 for high 
frequencies [4]. Relatively few detailed studies have 
been made for a theoretical definition of spectrum 
form. The works of Fitzpatric [5], Benjamin [6], 
Gilmore [7] may be mentioned, in which they con- 
sidered isothermal cases connected with cavitation 
problems, and Likhterov and Elperin [8] where the 
process of sound generation was treated for cases of 
bubble growth and implosion. It has been shown that 
the high frequency part of the noise spectrum varies 
ass-f- , *I5 but such slow decrease of the spectral 
density stems from assumption of liquid incompressi- 
bility and neglecting dissipative effects. The present 
work was undertaken to consider these factors and to 
extend the information available on the sound emis- 
sion in the nucleate pool boiling. 

THEORETICAL ASPECTS 

The momentum equation for compressible and vis- 
cous liquid is 

g +(Vgrad)V = - dgradpf igraddivV+vAV 

(1) 

and continuity equation is 

1 dp -_= 
P dt 

- div V, 

where V is velocity vector. 

A problem under consideration has a spherical sym- 
metry and consequently, velocities in all liquids have 
a potential (rqb), therefore 

curlV = 0. (3) 

The last term in equation (1) can be represented as 

vAV = v grad div V-v curl curl V 

and because of equation (3), it is apparent that 

vAV = v grad div V, 

and Navier-Stokes equations get simplified : 

(4) 

g +(Vgrad)V = - agradp+tvgraddivV. (5) 

The last term in equation (5) is a product of the 
viscosity kinematic coefficient and the value 

grad 19 
( > pdt ’ 

It equals zero in the case of inviscid or incompressible 
liquid. In the problem under consideration it may be 
supposed that viscosity is small and that compressi- 
bility is moderate, therefore this term can be neglected. 
The influence of the viscosity may be taken into con- 
sideration through boundary conditions. In spherical 
coordinates equation (5) will be 

Integrating (6) allows us to obtain 

g+;= _ s ’ dp - = -h(p). 
P 

(7) 
P, 

It is assumed that U, = 0 and p = pm at r = CC. 

Besides the equation (7) use is made of the Kirk- 
wood and Bethe hypothesis [9] that 
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NOMENCLATURE 

C sound velocity on the bubble boundary 7 initially uniform temperature of 

c, sound velocity in undisturbed liquid superheated liquid 
E acoustical energy TR instantaneous temperature at bubble 

.f frequency boundary 
h enthalpy T, saturated temperature of vapor 
I specific enthalpy of vaporization I time 

P liquid pressure V liquid velocity vector 

P7_ liquid pressure at great distance from L‘, radial velocity. 
bubble or ambient pressure 

P> saturated vapor pressure 

PS adiabatic acoustic pressure Greek symbols 
R bubble radius 1 dynamic viscosity coefficient 
li radial velocity of bubble boundary v kinematic viscosity coefficient 
# radial acceleration at bubble boundary P liquid density 

R0 equilibrium radius of bubble in liquid at PI. liquid density at great distance from 
uniform superheating bubble 

Y distance from bubble center P! saturated vapor density 
s spectral density of the acoustical energy 0 surface tension coefficient 
s entropy cb velocity potential. 

where 

dh = Tds+ f dp, 

The Gilmore solution for the bubble boundary vel- 
ocity l? in the case of bubble implosion [7] has fol- 

(9) lowing form : 

7’ is liquid temperature, s is entropy. For isentropic 
processes ds = 0, as the thermal dissipation is very 
small even in the shock wave front. 

The solution of (7)-(9) has been completed by Gil- 
more [7], with the assumption that in a viscous liquid 
one may write 

where pv is the gas pressure inside the bubble. 
The Tait equation connecting the pressure and den- 

sity of the liquid for adiabatic (isentropic) process 
may be used : 

P+B P * 

P,,+B -i-j pr ’ 

where B = 3000 atm and R = 7. 
Sound velocity square is 

andatp=p, 

c; = ;;(pc +B). 

The local sound velocity is then 

where 

is sound velocity on the bubble boundary. 
The vapor pressure in the bubble can be related to 

the vapor temperature by linearized Clapeyron equa- 
tion [lo] 

(12) 

In the equilibrium conditions (# = d = 0) the radius 
of the vapor bubble is given as 

Equation (11) reduces to 

(13) 

(14) 

if d << C and a considered case corresponds to inviscid 
and incompressible liquid. Integrating (14) results in 
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where 

3Paz 
a = 2(P, -P”) . 

If the velocity of the bubble boundary is sufficiently 
high, equation (I 1) can be reduced to 

(15) 

and then on the assumption C z c, 

RI3 
623 

J( 

Pm 
-_= 

R 5407, -PJC& > 

or 

where 

a = 3 J( Pm 
54(p, -R”)c; ) ’ 

(16) 

(17) 

equation (16) may be integrated easily : 

and 

l/3 

t2/3 = &2/3 
9 (18) 

where 

A = ~x~~-“~R;‘~c$~(R,-RJ”~P;“~. (19) 

The quasi-acoustical approximation may be used for 
definition of velocities and pressures. According to 
the approximation made by Trilling [l I], it is assumed 
that the velocity potential will satisfy the acoustical 
equation 

[ 1 g+cmf (4) = 0, 

and the momentum equation (1) can be written as 

Taking into account that v, = (&#+ar) equation (21) 
may be integrated on variable r : 

(22) 

where g is an arbitrary function, and the local liquid 
velocity will be 

0, = - 

9( t-2) 9( t-G). (23) 

r2 - rc, 

If the density p will be changed by pm in the first order 
approximation, then 

’ dp p-pm h= -_=- 
s Pm Pm Pm 

and on the basis of equation (7), the pressure may be 
expressed as 

P=Pm- 
Pm 

r 
- -v,‘. 

2 (24) 

The solution (23) and (24) in terms of an unknown 
function g and its derivative g’ results 

g(t-cI+!(c_vr_$yj 

g(t_E$)= -,(u;i_y) 1 . (25) 
On the boundary of the bubble, where r = R, v, = k 
and p = pv- (4pR/R) (neglecting surface tension), 
these functions will be 

R2 
g(t) = -c 

( 

R ‘2 Pm-P 4j.d 
c,ri-T+--+-- 

PCC PER ) . (26) 

g’(t) = - $ + 
R(Pm -PJ 4~4 

pi + Pm 
J- 

Now, substitution of the expressions (23) and (26) 
into (24) allows us to obtain 

z _Ezg+ $+L 
[ 1 

2 

P-Pm = Ps 
rc, 

The last term in this expression can be omitted retain- 
ing only first order terms, since acoustical pressures 
are considered for great distances from a bubble. Then 
the adiabatic acoustical pressure is in the form 

R(P, -PJ f 4d 

PCS PCC 1 . (28) 
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FIG. I. Comparison of experimental and theoretical data. 

Substitution of thk expression (14) into (28) and 
exclusion of constant pressure components yieid 

(2% 

The total acoustical energy emitted by the bubble is 

E = !!!!:. I (’ p: df, (30) 
vz c’, I 

where (neglecting the second order infinitesimals) 

(31) 

On the other hand, the emitted acoustical energy can 
be also defined as 

where S is the spectral density of energy and .f’ is the 

frequency. 
Comparing the right hand sides of expressions (30) 

and (32) and taking into account that .f’== 1 jr allows 
us to obtain 

which after differentiating yields the expression for 
the spectral density 

+ 29Sp(p, -p\ j2y” T ‘f. (33) 

where Ihe ~qu~l~briu~ size of a vapor bubble R, is 
given by expression (13) and saturated vapor pressure 
ft\, = p, (7;,) can be taken from ref. [I 21. 

CONCLUSION 

The expression for the high-frequency part of the 
noise spectrum obtained in this work differs frcm the 

results obtained in ref. [8], where the spectral density 
of the energy for boiling noise decreased pro- 
portionally ,#’ ‘2;5. It follows from equation (33) that 
taking into account the liquid compressibility and 

viscosity gives the stronger de~~d~n~e for spectral 
density vs the frequency, i.c. s(.f‘) ^v _f “. as the 
second term of the expression (33) wit1 prevail at. 
big frequency values. It may be seen that the fafldown 
of the spectral density is approximately of 30 
log,J 7’1 = 7 dB octave ’ the region of high fre- 
quencies is in agreement with the results of Nishihara 

and Bessho [3], The comparison of experimental and 
theoretical data is presented in Fig. 1. At the same 
time substituting the superheat T- T, into the 
expression for boiling spectra (33) yields that the hoi!- 

ing noise intensity varies as (T- I-,) ‘:‘. i.e. decreases 
with an irtcrease of the superheat in an agrcemcnt with 

exper~l~e~~al data of 
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